Sparse Coding and Counting for Robust Visual Tracking
نویسندگان
چکیده
منابع مشابه
Sparse Coding and Counting for Robust Visual Tracking
In this paper, we propose a novel sparse coding and counting method under Bayesian framework for visual tracking. In contrast to existing methods, the proposed method employs the combination of L0 and L1 norm to regularize the linear coefficients of incrementally updated linear basis. The sparsity constraint enables the tracker to effectively handle difficult challenges, such as occlusion or im...
متن کاملLow-Rank Sparse Learning for Robust Visual Tracking
In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm capitalizes on the inherent low-rank structure of particle representations that are learned jointly. As such, it casts the tracking problem as a low-rank matr...
متن کاملVisual Tracking Using Sparse Coding and Earth Mover's Distance
An efficient iterative Earth Mover’s Distance (iEMD) algorithm for visual tracking is proposed in this paper. The Earth Mover’s Distance (EMD) is used as the similarity measure to search for the optimal template candidates in feature-spatial space in a video sequence. The computation of the EMD is formulated as the transportation problem from linear programming. The efficiency of the EMD optimi...
متن کاملSparse coding based visual tracking: Review and experimental comparison
Recently, sparse coding has been successfully applied in visual tracking. The goal of this paper is to review the state-of-the-art tracking methods based on sparse coding. We first analyze the benefits of using sparse coding in visual tracking and then categorize these methods into appearance modeling based on sparse coding (AMSC) and target searching based on sparse representation (TSSR) as we...
متن کاملRobust Visual Tracking via Appearance Modeling and Sparse Representation
When appearance variation of object, partial occlusion or illumination change in object images occurs, most existing tracking approaches fail to track the target effectively. To deal with the problem, this paper proposed a robust visual tracking method based on appearance modeling and sparse representation. The proposed method exploits two-dimensional principal component analysis (2DPCA) with s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2016
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0168093